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Abstract, A fully quantum-mechanical treatment of the dynamical Stark effect for resonant
interactions is presented. The description begins with an operator master equation for the
atom plus incident field. Reduced atomic matrix elements are derived for arbitrary field
strengths, First- and second-order correlation functions in the scattered field are also
obtained and discussed in relation to the scattered spectrum and intensity-fluctuation
measurements. Our formalism has the appealing feature that all this information is readily
available from the one set of four coupled equations. The deficiencies in both the one-photon
approximation and the semiclassical perspective are established in a natural and transparent
fashion.

1. Introduction

The subject of resonance fluorescence is a relatively old one, receiving classic treatment
by Weisskopf and Wigner (1930, 1933} and later by Heitler (1954). These early
calculations were based on perturbative techniques and hence restricted to weak
scattering situations where the atom remains close to its ground state and behaves to a
good approximation as the electron oscillator of the Lorentzian theory. An increased
incident intensity alters the behaviour quite considerably, however, as the atom is then
driven significantly from its ground state. The phenomenon of resonance fluorescence
then exhibits new features associated with a behaviour which has come to be known
as the dynamical or ac Stark effect. Here the quantum nature of the scattering
source makes its mark, and in particular we find a quantum statistical component in
the spectrum.

Renewed interest has recently arisen in resonance fluorescence in relation to this
nonlinear region. This has stemmed from proposals (Stroud and Jaynes 1970) that here
there may be a test for QED as against the neoclassical theory for an atom reacting
with the radiation field (Jaynes and Cummings 1963, Crisp and Jaynes 1969, Stroud
and Jaynes 1970). Of particular interest for example is the long-time behaviour of the
scattered spectrum. This is predicted in the neoclassical theory to reduce to a sharp
line at the incident frequency, contrary to the quantum-mechanical expectation
(Newstein 1968, Mollow 1969, Stroud 1971, 1973). In response to these proposals and
the subsequent experimental verification of a three-peaked spectrum well into atomic
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saturation (Schuda et al 1974, Walther 1975, Wu et al 1975, Hartig et al 1976) a
number of theoretical discussions have appeared (Chang and Stehle 1971, Gush and
Gush 1972, Smithers and Freedhoff 1974, 1975, Hassan and Bullough 1975, Mollow
1975a, b, Carmichael and Walls 1975a, Swain 1975, Cohen-Tannoudji 1975, 1976).
Although in the course of this ‘dialogue’ differences have arisen in the various predictions,
there appears now to be emerging a general agreement on the form of the scattered
spectrum for intense fields and its long-time behaviour.

We present here a fully quantum-mechanical analysis of the resonance fluorescence
problem for a two-level atom in a resonant field. Our fundamental starting point is
an operator master equation in the Markoffian approximation. While this approxi-
mation has been criticized by some authors we may now rely on its recent verification
for this specific application by Mollow (1975) and Epstein (1975). From our point of
view we find that it has considerable tutorial advantages over those treatments which
begin directly with Schrodinger’s equation. The various features of atomic dynamics
and scattered spectrum are readily available from an essentially simple analysis and
in a language indicating a stochastic process whose statistics have a purely quantum-
mechanical origin. This serves as an uncomplicated and worthwhile perspective on the
problem. Moreover we find that the second-order correlation function may be
extracted with little extra work from the same equations that give atomic matrix
elements and the first-order correlation function. This is a feature which has not
previously been discussed in the literature and has considerable significance in that it
gives rise to an interesting proposal for the measurement of spectral detail by optical
homodyne or heterodyne spectroscopy.

In §2 we outline the formal apparatus underlying our approach. Atomic dynamics
are then investigated in §3 in terms of solutions to optical Bloch equations and the
semiclassical form of the field is indicated. The first-order correlation function and
scattered spectrum are obtained in §4 and the one-photon approximation demonstrated
in §5. The second-order correlation function is derived in §6 and proposed as a basis
for a new measurement of linewidths and frequency splitting.

2. Formal apparatus

The phenomenon of resonance fluorescence arises with the illumination of an atomic
dipole transition by resonant radiation and appears as scattering from the incident
beam into other modes of the radiation field. In subsequent sections we present
results on both atomic dynamics and correlations in the scattered field. Here we
formulate our approach and outline the formal apparatus employed to meet these ends.

We consider a two-level atom coupled at resonance to a highly populated field
mode and simultaneously interacting with the vacuum. Qur treatment begins with the
perspective which sees here an open system S interacting with a thermal reservoir R
atzero temperature. Dividing the radiation field into incident and scattered components,
Ei(r, t) and Eg(r, t), with

haw,
26,V

Er, 1) = i< >m bola(t) e*or — a'(r) e~ o)
2.1

hewy,

12
Bb0=1g, (250 V> bsbrs ()™ = b e
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we then write the Hamiltonian for the composite system S @ R in the form
H=H5+HR+HSR (22)
with

Hg = hwoa'a + $hweo, + h(kea’o_ + xfac )

(2.3)
Hp = Z hobf 3by Hgp = Z hlicy 1k 20— + Kibr04)
ki i

a" and ¢ create and annihilate photons. in the incident beam with frequency wo,
wavevector k, and polarization &, ; b,ﬁg , and b, ; fulfil a similar purpose for the vacuum
mode of frequency w,, wavevector k and polarization &, ; 6., ¢, and o are the usual
atomic pseudo spin operators and x, and x, ; are coupling constants for atomic
dipole interaction of frequency wg, w, and polarization é,, &, ;. The interaction
between the radiation field and the atom has been written in the electric dipole and
rotating-wave approximations.

The derivation of a master equation for the reduced density operator p of S is well
known and under the Markoffian assumption, the familiar procedures (see, for example,
Agarwal 1973) lead to the form

do 1 Y

4 = Hspl+5Q0-po. —poio. —a.0-p) (2.4)
where y corresponds to the Einstein A coefficient. This we may express formally as

dp

F oy 2.5

i P (2.5)

with the generalized Liouvillian .% defined by
1 o
%0 = —[Hs. 0] + 5(20_pos — po.o_ —0.0_p) (26)

O being an arbitrary operator.
It is convenient that we work in the energy representation corresponding to the
Hamiltonian of S. For the familiar eigenstates of Hg we have
HS|ED = hloo(n + 3) + x(n + D ED o)
Hs|E> = hlooln + 1) = xe(n + DI ED '

where

1
|EZ> = ﬁ(\n, +>+n+1,-))
: (2.8
Es> = —5(n +> —In + 1, =)
»\//‘
[n) are the Fock states and |+ > and | —) the upper and lower atomic states. Within
this representation, equation (2.4) takes the form

dpuyime i £ ¥ ¥
_,él]r‘L; = _E (Eﬁ - E;ﬂ)p”-’];m,f + (_ I)U+éé Z p!7+1,,u;m+lA\' - Z Z (pn.n;m.\' + pn,\':m.i)

" (2.9)
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where

Prgmz = <EJlplE5> n=12 =12 (2.10)

We have here an infinite set of coupled equations indicating the successive scattering
of photons from the incident beam and the consequent eventual decay of all matrix
elements to those of lower photon number. It will nevertheless be unnecessary, so far
as the fluorescent field itself is concerned, to solve such a complex system. We may
put the detailed dynamical structure aside and deal only with atomic matrix elements
summed over the incident field. We define p; , by

Pen = 2. Prinn- 2.11)

The scattered field may be expressed in terms of the atomic source operators for
times wyt >> 1 (Agarwal 1974, Ackerhalt and Eberly 1974, Kimble and Mandel
1975a, b, Saunders et al 1975) by

Es(r, 1) = E{P(r, t) + E{(r, 1) (2.12)
with
2
(+) — 2 _ w0 N, r _r
E{T(r,t) = &7 (r, 1) G, cr (ﬂ X r) X ra_<t 2 ) (2.13)

&§(r, t) describes a freely propagating field and the retarded source term is simply the
retarded field generated by a point dipole (Landau and Lifshitz 1962); u is the atomic
dipole moment. With this result we may then clearly obtain field correlations from
the dynamical information within equation (2.9). In particular, for the first- and second-
order correlation functions given by

GV, t;rt + 1) = (E§(r, VES(r, t + 7)) (2.14)
GO tirt 4+ 1) = (ES N )ES M t + 1) ESVNr, t + 1) ESV(r, ) (2.15)

we may write respectively

GOr tirt+ 1) = Io(r) (o4 (Do (F + 1)> (2.16)
GO timt + 1) = Io(r)? (6. (Dot + Dot + Do) (2.17)
where t = t — r/c and
2 2
Io(r) = [ 4n(;:)0c2r <,u x £> x ﬂ (2.18)

is the intensity detected at position r at the retarded time 7 = 0. Our concern is then with
the evaluation of the two-time averages (o, (H)o_(¢ + 1)) and (o, (D)o, (t + )o_(t + 1)
a_(A)>. For this purpose the quantum regression theorem of Lax is available (Lax 1967).

The validity of the quantum regression theorem in this problem has been established
within the rotating-wave approximation (see Mollow 1975a, b and references therein).

Thus we find for 7 > 0 the expressions
(a+(Do-(t + 1)) = Trs[o- e p(D)o ] (2.19)
and

(0,004t + Dot + 1)o- (1)) = Trs[o,0- e“To- pli)o.)]. (2.20)
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The determination of the matrix elements (2.11) and averages (2.19) and (2.20) is
readily made from the solution of a simple set of four coupled equations. We merely
assume an incident field of high intensity, possessing a sharply peaked photon-number
distribution. We may for example take a coherent state corresponding to laser radiation

¥

o> = exp(—4124%) Y. (ﬁ;* . (2.21)
Here i1 = |«/?, which for the Poisson distribution also gives the variance. Then for
i ~ 10® a fractional change in photon number of 10™* only arises over one standard
deviation. Combined with a parametric approximation the result of this circumstance
is that in summing matrix elements over the field, the factor —i(E} — E)/h in
equation (2.9) may be taken through the summation as —i(E! — E3)/h. We find for
py.c the coupled equations

P2z —y 3y 0 0 023
d| Pu o=y 0 0 0
e DA el DR A ) (2.22)
I} pan -7 —ay —Gy + 2% —ay P21
P12 -3y -1y -4y —(Gy = 2" 2w\ pi2

Essentially the same set of equations may be used in solving for the averages (2.19)
and (2.20). We may define respectively the two operators £(z) and T1(1) by

I(7) = eZ7X(0)

" (2.23)
Z(0) = plt)o +
and
(z) = e** T1(0
A : (2.24)
I0) = o_ p(t)o + .
It then clearly follows that we may write
>
40 _ gx
dz
. (2.25)
MO _ ey
dt

and that matrix elements of these operators are consequently determined by equations
formally equivalent to equation (2.9). After a transformation X, (1) = fl,,‘;(r)e"i"“’,
the matrix elements of these operator equations (2.25) reduce to equations which are
equivalent to equations (2.22) under the same conditions which lead to equations (2.22).
Moreover, evaluating the respective traces, (equations (2.19) and (2.20)) vields

(oot + 7)) =3(E22(1) — 21(1)) — $(E21(1) — T12(1) (2.26)
and
(o, (ot + Dot + Do (1)) = HT2(0) + T, (1) + $([Tzy + I15(1) (2.27)
where the matrix elements Z, .(7) and I1,, .(7) are respectively defined by

L, :(1) = Z,(EL.+1|X() E;) (2.28)
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and
Hn,é (T) = Zn <Em H(T)lE£> (229)

We therefore simply require the solutions to a single set of four equations (equations
(2.22)) in order to evaluate both atomic matrix elements and first- and second-order
field correlations.

3. Atomic dynamics and the semiclassical field

The coupled equations (2.22) are easily solved for atomic matrix elements. Defining
the vector p

P22 + p1
51 P22 — P11 (3.1)
P21+ P12
P21 — P12
we find the formal solution
plt) = S exp(At) S~ 5(0) (3.2)
where
Si 0 0 0
0 S, 0 0
S = ‘yz-i-%x-zsl 0 S, ;%Ll_l-;l 4 (3.3)
int i 72 2int/2
Zm%v : y? +/8fu<2 51 0 -0 Sa
and Sy, S,, S3 and S, are arbitrary constants.
A is the 4 x 4 diagonal matrix
A=D0O —3y, 37+ Q -3y - Q) (3.4)
with
Q = [(5)? - 4in?]2, (3.5)

If we begin with an atom in its lower state the solutions, written in terms of the
energy representation of the free atom (using equations (2.8) and (2.10)) are

4inxc? a4 o
pr ()= W I —e "% cosh Qt + ﬁstht (3.6)

~ 3.,
e ()= =20k d T | 1 —e 3% cosh Qr + 2. sinh Q¢
P+ Q

y2 + 8iik?

... Sinh Q¢
+ _lfe~3)ts4 }

Q
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where we have defined p, ,(t)and p, _(f) by
pa+(t) =y (n, + [p(DIn, 4>
pe—(t) =T, {n+lp(oln + 1,
Naturally
po(B =1 puu(t)
po oty = pu (D

Similar solutions follow for an initially excited atom and include an additional
contribution accounting, in the weak-coupling limit, for normal spontaneous emission.
These solutions are

4 3
p+,+(f) = L[l —e7? "’”“(cosh Qt + %sinh Qt>:|

(3.9)

P2 + 8nik?
4w (cosh Qr — %Sinh Qt> (3.10)
p+, (1) = —2int*k {7——/-_—7[1 —e 4 (cosh Qt + %—ysinh Qt)i]
ve + 8k Q
_y e %} 3.11)

Similar solutions to the semiclassical Bloch equations for a spin 4 system in a combina-
tion of static and RF magnetic fields were first given by Torrey (1949).

In these solutions we see the dynamics separating into an initial transient regime,
followed by a saturation steady state. For weak coupling, the saturated atom settles
close to its lower level and we expect the behaviour of a classical electron oscillator.
With increased incident intensity, however, we find the saturation steady state moves
into the nonlinear region

47 i?

- 3.12
y? 4+ 8’ (3.12)

,Usi,+ =
For very intense illumination, a limit is reached midway between the upper and lower
levels

lim g% . = 4. (3.13)

—C
Quantum fluctuations may therefore be expected to become important with intense
illumination, while remaining of no consequence for weak scattering.

To appreciate the predictions of the semiclassical perspective on the scattered field,
we calculate the mean field which from equation (2.13) reads

2 ~
<E§+)(V, 1y = - 47-52;002;‘ <y X ;) X ; {o-(1)) (3.14)

where the average {(¢_(t)) is given by

-~ ~

Co-(1) = Z,{n+ | p(t)In,— . (3.15)
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Thus for the coherent-state field defined by equation (2.21) where « = |«| ¢'® we find
for the mean field

i CU% ¥ r iR
CES (1)) = = px ] pe (B e (3.16)

Anéycir r

where p. (i) is given by equations (3.10) and (3.11) for an atom prepared in lower
and upper states respectively.

Here again is the initial transient region followed by saturation. For very intense
incident radiation

472 3> (4v)? (3.17)

we may write

2
iy = | 0 ANV EYPeT 7 ~(iwof+¢) _ L o304
CEsT0n 1) |:47m@0 c?r <y X r> % r} 20 x y? + 8hx? [e €
(exp{ —[i(wo + 20 2K)f + ¢]} + exp{ —[i(wo — 20'2K)T + ¢1})] (3.18)

which would predict semiclassically a three-component spectrum through the transient
region reducing to a sharp line for long times. This is an erroneous prediction
however as has been confirmed by recent experiments (Schuda et al 1974, Wu et al 1975,
Walther 1975, Hartig et al 1976). We will see in the following section how this
inadequacy arises in neglecting quantum fluctuations. For weak illumination the sharp
spectrum is as expected from classical electron-oscillator theory.

4. The first-order correlation function: scattered spectrum

In this section we present solutions for the first-order correlation function (2.14) from
which we derive the scattered spectrum. This spectrum is defined in terms of the
probability P(w, r, T') for photon detection by a monochromatic detector during interval
T. We have the result

T T
P(w, v, T) IJ dtlf de, e~ GMNp 1y e, t5) 4.1

and with normalization so the integrated spectrum gives the intensity I{r,T) =
G'(r, t;r, t) we then define the spectrum I(w, r, T) by

1 I, T)

0,9, T) = =~ w———— Plo,r, T). 4.2
Hon T) = 5 i PO T) 42)
Since
G(l)(r, tl JF, tZ) = G(l)(',’ t2 JF tl)* (43)
it readily follows that
1 Ir,T) JT torie .
I " T — > 10T (1) 44 4 .
)= 3 o 2R | dzjo dr o GO, 11, 1 + 1) (4.4)

where we have introduced ¢t and 7 with t;, —» tandt =1, — t.
Now the first-order correlation function, as given by equations (2.16), (2.18), (2.19)
and (2.26), follows from the solution of equations (2.30). This is provided by equation
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(3.2) with the introduction of the factor e~ “o*, Thus, defining

Lo+ Z
N 2y, — X
e (4.5)
251 + X4
Z21 - Z12
we write
S(r) = e " S exp(AT)S ! $(0) (4.6)
and from equations (2.23) and (2.28) the initial vector £(0) is given by
p-.+(0)
- G
s =3 7 (47)
—p-.+(0)
‘—,0+,+(f)

Due to the complexity of the solutions for atomic matrix elements and hence £(0) a
general solution would serve no purpose here. If we concern ourselves now solely
with the steady state however, from equations (3.6), (3.7) and (3.9) we may define
2(0) in equation (4.7) by

« _ 4nx?
,0+,+ - '))2 + 87_7 KZ
s o 4 1
prm = y? + 8nK?
(4.8)

E 17 S PR A

P+, C 02 1 8kl

=20

P+ v% + 81 k2

and hence find

(1) 47xc? y? —iwor 1 1 :
Gy'(x) = Io(")yz T 8nrkt| 57 1 gl ¢ + zexp[—(37 + iwg)7]

1 Yo 3 +Q Yy 1iy+Q 3 SR
- 5(.},2 T 8 K2 9} - 5 - 5 %) )exp{—[(zy — Q) + iwy 7}

1 v y—-Q &y 1iy-0 3 ,

5("/2 + Sﬁkz Q - 5 - 2 Q exp{ —[(ZV + Q) + le]T}}‘

4.9)

Taking the limit for T — cc, the spectrum (4.4) is given by the Fourier transform

xX

1 |
lo.r,2) = 2Re L el GI(z), (4.10)
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Thus, in the definition (3.5) for Q we find a threshold at
212 = 1. (4.11)

Here the spectrum splits, changing from a single peak to a central peak plus equally
spaced sidebands. For weak illumination,

dink? << (57)? (4.12)
equation (4.9) reduces to

4 i’

(1), —
Gss (T) IO(V) 72 + 8ﬁl€2

e oo (4.13)

and in the strong-coupling limit (equation (3.17)) we have

Io(r 2 : . .
Gih(e) = 12! )< L e 4 dexp[-(3y + iwg)] + Lexp{ — [y + i(wo

2 \y? + 8ak?
+ 201 %x)]e} + dexpl —[37 + iwo — 2f11"2r<)]r}>. (4.14)
Thus, from equation (4.10), for weak scattering we find
4 xc?
I(w,r,OO)=IO(V)mK—25(w —(1)0) (415)

and we regain the sharp spectrum predicted by the semiclassical theory. For very intense
fields however, equations (4.10) and (4.15) give the results

Io(r) <2n y < 1 7

I(w, 1, 00) = S — wo) + >
(@1, ) 2n v? + 8k’ (@ = o) 23 + (0 — wo)?

1 3y 1 2 )

TIE S o = (w2 ) T AE) T [0 = (00 — 20 2T

(4.16)

Thus, added to the coherent scattering, we see three peaks arising from the quantum

fluctuations, in contrast to the picture presented for the steady state by equation (3.18).

As an example of the behaviour of this first-order correlation function and spectrum

in the transient region, let us now consider the time-dependent matrix elements in

equation (4.7) but make a restriction to the intense field limit (3.17). An expression for

the transient spectrum has not previously been obtained. For an initially excited atom
equations (3.10). (3.11) and (3.9) give

P +(f) =31 + e ¥4 cos 20" 2kt

po _(D) =41 — e~ ¥4 cos2n!? k1) il
N L a=34 e Apl2 L F (417

p. —(t) = —3ie sin 2n*'* x t

po () =tie ¥ sin 2012 k 1,

Introducing these into equation (4.7) we then find
GM(r it + 1) = 31,(3[1 + exp(—2y0)cos 2% ktlexp[— (37 + iwg)r]
+3{l + exp[—(Fy — 2ia' *kpljexp[ -Gy + iw1)1]
+ {1 + exp[—Gy + 2in' 2 )t ]lexp[ — @y + iw;,)1]) (4.18)
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where we define

Wy = wo + 27K
Wy, = we — 202k, &19)

We have managed the various integrals involved in equation (4.4) to obtain the time-
dependent spectrum. For normalization we find

I, T) = 1) (1 + e~ T cos 2012k T) (4.20)

and

! 7 1y 3y7/4 -
-3y Z1/2 .
jpdl’[(i‘,l’)z%lo(l’)<T+W(l‘-‘e Y C0521/112KT)
27_11/“2K NG T -1/ 2

+ We W1/ sin 202 K T> (421)
with T'= T — r/c. A full discussion of the scattered intensity is given by Kimble and
Mandel (1975a). Now the time dependence of the probability P(w,r, T) has a double
origin. There is a non-stationary emission process and a superimposed T dependence
associated with the finite time for detection. For the steady-state probability P(w,r, T)

arising from equation (4.8) in the limit — oc only the second consideration remains.
We find

Pu(w.r. T) = Pw.r, T) + P2 (.1, T) + P22(eo,r, T) 4.22)
with ‘
Io(")( %V N (%”/)2 — (o — 600)2
P(w,r, T) = T —
( 2\ B+ @) L @ § (@ = wo) P
e — o)

x [1 — e T2 cos(w — wo)T] —

[(37)* + (@ = ©0)*]?

x ¢ 172 gin(ew — wO)T> (4.23)
Io(r) 3y B Gy)? — (0 — w3,)?
P:;“ 0, ¥, T = T -
@rT)="3 ((%‘/)2 g IR {5 PRSP A

%V(w — w;zy)
[Gy) — (0 — 021)*]°

x [1 — e ¥%TH cog(w — w,)T] —

x e~ 34 sin(w — wZI)T> (4.24)
Io(")( %V - (%”/)2 —(@—wu)z
P2, r, T) = T -
@D = T E T T w0 | @)+ =0

%”/ {0 — wyy)
[37)? — (0 — w12)’]?

x [1 —e 3% cos(w — wy,)T] —

% ¢ 3T gin(w — wlz)T>. (4.25)
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These results may be combined with equations (4.20) and (4.21), where we retain the
first terms only, to give the spectrum obtained from a saturated atom after a finite
time T. Clearly for T — = we regain equation (4.16). For the complete non-stationary
correlation function (4.18) the spectrum is extremely complicated. We find it possible
however to make a general prescription in the form

Ir, T)

o T) = lowr. ) o

+ I'ew,r, T). (4.26)

The first term is simply the three-peaked spectrum of the steady state modulated by
the scattered intensity. The term I'(w, , T) which through the transient region modifies
the shape of these three peaks contains zero integrated intensity. A full expression of
I'(w,r, T)is given in the appendix.

Of course no restriction on the number of photon emissions has been made to
this stage and equation (4.16) agrees with results by Mollow (1969, 1975a, b).
Swain (1975) and Smithers and FreedhofT (1975). We will proceed now to show how
a one-photon approximation may be introduced into our formalism demonstrating the
inadequacy of omitting photon cascades.

5. One-photon approximation

Taking matrix elements diagonal in the field only, the master equation (2.9) reads

dpn. g ~1i y I3 e b
“‘dz—'l" - 7 (E;i - E;,) p,,_w;,,; + (_ ])J N Z “2; p!l*].;{l”%lw - Z Z (rf)m.;z:n.\‘ + pn.\‘;m;)-

(5.1)

Let us now take the incident field initially in a Fock state with N photons and
the atom excited. All other modes are initially in the vacuum and therefore the
possible subsequent states of the coupled field plus atom are |N —n+).
IN —n+ 1, —>, n varying from 0 to N. Correspondingly in the Hg representation we
have states |EZ> and |E}) for which from equation (5.1) we may write a set of N + |
equations. AS py 1,y +1.: Must remain zero at all times, there are N coupled equations,
formally the same as equation (5.1), while (or py . -

8 - 2 — B s =5 S (s + ) 52)
which yields
: PA:z;;\:z\ : -5 0 -y -3y “ Pxana :
i PNIND ] 0 =3y -4y ~%y PN1iNd (5.3)
Al proov -y %y —Gy+2NY) 0 PN2N B
\ONTIN 2 -3y - 0 — (5 = 2IN"2x) PNaNa,

/

Solving this system by the method of §3 we find

A7 172,02 A\ 2 n )
PN2N 7(I) = PNI:N 1([) = -—%‘ g2 2N l - é cosh Q'r + é;LSII‘lh Q't (5.4)
N.2IN2 NN, Q/ Q/ Q/




A guantum-mechanical master equation 1211

DIN T2 Lo N2 Ly
Praw(t) = —%e"‘”[ 19, . o <1 1 o h%) cosh Q't
Lo 2INT2g
27 : ,
+ (a + o ) sinh Q t] (5.5)
2‘[\71 2\_ 1., 2'N1,2 S da,
pyiwvalt) = %e_’tz[ ' a : % + <1 e o Eg) cosh Q't
1., N2
- G—zi _ 2N , '>sinh Q’r} (5.6)
where
Q' = [(37)* = 4NwT]V (5.7)

We will concern ourselves from here only with the limit of intense illumination
ANK? > (52)% (5.8)

Here

PranAt) = pyiva(t) = Fe7702

py2va(t) = Texp[ =Gy + 2iN' )] (5.9)
pyivalt) = fexp[—(GFy — 2iIN2w)]

which gives for the probability that the coupled atom plus field remains in its initial
state

Py + :‘\:‘,\,(t) = e_}'t‘z COS2 NI‘JZKf. (510)

This is just the result obtained by Stroud (1971) in a one-photon approximation. This
is not however the probability that the first photon emission has not taken place, as
stated by Stroud. We must recognize the possibility with an initially excited atom of
realizing the state [N + 1,—) without emission to the vacuum. We find from equation
(5.9)

Oxen D+ pvpr —wgr () = e 2, (5.11)

The probability for no emission therefore decays exponentially. without modulation.
This is missed in Stroud’s analysis since his basis does not include the state [N + 1, =),

We now calculate the first-order correlation function and spectrum in a one-photon
approximation by restricting ourselves to the reduced set of basis states |E3), |ELD>
and [E{_, ), |Ex_ > corresponding to the possible states involved in the scattering of
the first photon. The calculation proceeds essentially as before with equation (2.28)
replaced by

Z:(0) = (EY|Z(D) B - 1) (5.12)

This obeys an equation formally equivalent to equation (5.2). After a transformation
%,(1) = Z,:(r)e 7% the matrix equations of these matrix elements reduce to a form
equivalent to equations (5.3).

Now in equation (5.9) there is no steady state as the matrix elements decay
eventually to those of lower photon number. In the knowledge that a steady-state
spectrum does arise however, in the one-photon approximation we see it maintained by
a series of independent emissions from the atomic excited state, each followed by



1212 H J Carmichael and D F Walls

pumping back to the excited state by the incident field. The spectrum is then built
up from a large number of identical contributions arising in separate transitions. In
solving the equations for Z,.(r) we then take for the initial cogditions required by
equations (2.23) and (5.11) those defined by equation (5.9) for t = 0. We find from
equations (2.14) and (2.26)
GV(0) = $o(r) (exp[ — (37 + iwo)t] + Fexp{—[y + i(wo + 2Nk}

+ texpl —[3y + i(lwo — 2N 2k)]}). (5.13)
Substituting into equation (4.14) gives

PR . [ R
T o ((%“/)2 + (@ —wo)* 23 + [0 — (wo + 2Nk

1 37
TG A Do — (o - 2N“2K>]2>' G14

This spectrum is the same as that obtained by Stroud (1971) with the absence of
his linewidth narrowing (for the origin of this feature see Mollow 1975). In comparison
with equation (4.16) (neglecting the coherent scattering term) we see then the inadequacy
of the one-photon approximation in predicting linewidths and peak heights. In equation
(4.16) sidebands are broadened from the central peak by a factor of 3:2 and peak
heights are in the ratio of 3:1. The one-photon approximation omits the sideband
broadening and gives the ratio of peak heights as 2:1 (Carmichael and Walls 1975a).
With the scattered intensity given by G{(0) we might note also the reduction of
intensity by a factor of ¥ in equation (4.16) as compared to equation (5.15). This
arises in the depletion of the initial scattered intensity to half its value at saturation.
From equation (4.8) we have

GO, 1y, 1) = $o(r) (1 + e 3% cos 2n1 2 k7). (5.15)

We note in conclusion that while we have restricted ourselves here for the most
part to the limit (equation (5.8)), for arbitrary intensities we will obtain the general
features of the previous section with splitting of the spectrum at a threshold.
Clearly from equation (5.7) however, the one-photon approximation sets this
threshold at

Ly = 2Nk (5.16)
indicating twice the intensity required by equation (4.12).

6. The second-order correlation function

We turn in this final section to the second-order correlation function and intensity
correlations. Calculation of this function is readily available in our formalism. With
equations (2.17) and (2.27) we require only the solution to equations (2.31). This
follows again from the scheme outlined for atomic dynamics, and defining
T, + I,
N I,, — 11
=4 * " (6.1)
I, + 11,

\HZI - HIZ
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we may write

[I(r) = S exp(A1) S~ ! [1(0) (6.2)
where § and A are as defined in equations (3.3) and (3.4). From equation (2.24) we find
pa ()
11(0) = % ’ - | (6.3)
—p+ +(0)
0

We will concern ourselves only with the steady state and therefore from equations
(3.6) and (3.10) the initial condition is specified by

PR = ,Timgc—zkl (6.4)
Substitution in equation (6.2) yields

G&(1) = GL(0)? \:1 — g7 34 (cosh Qr + %sinh Qr>:| (6.5)
where G{}'(0) is simply the steady-state intensity

GD(0) = I () ,‘2*4}%;? (6.6)

Now the familiar demonstration of second-order correlation effects is, of course, the
photon-bunching phenomenon in the Hanbury Brown and Twiss experiment (Hanbury
Brown and Twiss 1956). In contrast to this there are also fields for which photons
tend to be separated, on the average producing second-order correlations which fall
below G{!)(0)? as T approaches zero. Such an effect has been termed photon antibunching
and arises for example in parametric subharmonic generation (Stoler 1974). Turning
then to equation (6.5) we find just this behaviour where for © = 0, the second-order
correlation function vanishes. The interpretation of this is simple. It of course depends
solely on the quantum nature of the scattering. Consider a photon detected at a
position r and time 7. This then serves to identify the atom in its lower state at time ¢
so that we may view this emission as preparing the atom in its ground state. Knowing
that any subsequent emission must begin with an excited atom, a delay corresponding
to the time taken to regain this excited condition is naturally expected. We ask
therefore—what is the probability for finding an initially unexcited atom in its upper
state? The answer is given by equation (3.6) and is just the expression (6.5) for
G{¥(1). It has been pointed out by Cohen-Tannoudji (1976) who independently suggested
the use of photon-correlation techniques in resonance fluorescence experiments that
this provides an example of the principle of reduction of the wavepacket in quantum
mechanics.

In the weak field limit, equation (6.5) takes the form displayed in figure 1:

Gx) = GP0)* (1 — e77 )2, (6.7)

Here this antibunching phenomenon is particularly significant since it provides a purely
QED prediction in a region which is otherwise adequately described in a semiclassical
treatment. Measurement of G'2(t) therefore presents the possibilities for a further test of
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I6% 1o)P

G2 (1) {Intensity?)
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0 20 40 80 80 100 120

7 {orbitrary units)

Figure 1. Second-order correlation function for light scattered by a single atom,
27 Pk «< &y

QED. For strong illumination the correlation function is presented in figure 2 and
corresponds to the form:

G(1) = G0y (1 — e~ 3 cos 21 2k1). (6.8)

Here we have both photon bunching and antibunching displayed in the one situation.
This of course corresponds to the oscillation of the probability for excitation through
the transient regime between values above and below that attained at saturation.

Let us now consider G{2(z) from another perspective: that which sees in it a possible
source for the experimental measurement of spectral parameters. We are concerned then
particularly with the form (6.8) which is associated with the three-peaked spectrum
given in equation (4.16). We see directly that contained in this function is information
on both the peak widths and the splitting frequency. With the measurement of

20

16

6tk

CL B .
- L33 R T T A T 0 Y I W A\ Ns S
2
VAVARAS
i 08
g4
(L]

ATETERIN CERNERNREE ARE RN TN NN RN SEUEE SRTES N NN STEEY SR ST FENTS)

40 60

o
o ~
S S SEERuNNEANERRERY

T {orbitrary units)

Figure 2. Second-order correlation function for light scattered by a single atom,
272Kk > 4y,
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G{¥(t) we can then extract spectral detail which has to this stage been unavailable
(Carmichael and Walls 1975b, 1976).

Now equation (6.5) applies to the scattering from a single atom repeatedly
absorbing and re-emitting photons from the incident field. There is clearly then going
to be a major problem obtaining sufficient scattered intensity in any attempt to measure
this correlation function. In view of this fact we might usefully consider the simultaneous
illumination of many atoms. This corresponds to the experiments of Schuda et al
(1974), Walther (1975), Wu et al (1975) and Hartig et al (1976). where an atomic beam
is arranged to cross a laser field so that many atoms experience irradiation at one
time. The scattered field Eg(r, 1) becomes the sum of fields Eg (r, 1) arising from individual
atoms

Es(r.t) = ; Eg(r 1), (6.9)

Now these scattering centres enter the laser field at random times and may be taken
to act independently. This means that the component of G{Z(z) corresponding to
the second-order correlations for individual atoms is swamped in the limit of many
atoms by that corresponding to the product of first-order correlations. This reflects
the introduction of Gaussian statistics which follow from the central limit theorem.
We find a result which holds generally for Gaussian signals (Glauber 1963):

GO tirt+ 1) = GO t;r, 1) + |G, t1rt + 1)) (6.10)
We may take the illuminated atoms in their saturated state and then the summed
field will be stationary and the first-order correlation function simply proportional to
that for a single atom. For weak and strong illumination respectively we may therefore
write from equations (4.13) and (4.14)

4k ,

|Gl Io(")w (6.11)

and

|Gi(0)] o

The property of photon antibunching is lost here as we expect, nonetheless equation
(6.12) still contains the spectral information hoped for. Indeed it bears possibilities

Io(r ‘ ‘
—02(,)%( T2 e m 3T cos 2t P kT, (6.12)

Q
h

o
N
ET“Y‘FF\’"I‘F"‘ITT‘T]V(!!I(I’TT‘F‘FFFII!l!T[TT‘F

Q
=~

|Gm ()| Intensity)

b b e b

60 80

o
=~
o

T{arbitrary units)
Figure 3. Second-order correlation function for light scattered by many atoms,
27'2k: 4y = 20: 1. Sideband displacement 10 times natural linewidth.
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r{arbitrary units}

Figure 4. Second-order correlation function for light scattered by many atoms,
274y = 100:1. Sideband displacement 50 times natural linewidth.

over and above those found in equation (6.8). In figures 3 and 4 clearly the addition
and subtraction of the upper and lower envelopes makes available both the curves
e~ "% and e *""/* Here then is the potential for a direct test of the predicted ratio, 3:2,

for sideband broadening.
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Appendix
We present here the full form for the term I'(w,r, T) in equation (4.26). From
equation (4.2) we write

1 I T)
2n [} de I(r, 0)

with the intensity and integrated intensity given by equations (4.20) and (4.21).
P'(w, r, T) is conveniently written as the sum of four terms

I'lo,r, T) = Plw,r, T) (A1)

Plow,r, T)= —%I,() él P (w, T). (A.2)
We have
e = %<(%—~/>2 T e e @

x (1 — e~ 37714 cog 2012k T) — %<(23W)2 i (_a)w—uwm)z

G- (_ww—l2wﬂ>2> @ iycxr—mz e 3T sin 20! 2T (A3)
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Py(, T) 2 o .
K w, ES 3 -
: )7+ (0=l 37 + (@ —wo) &) + (@ — o)’

X @~ % 2> [1—e T2 cos(w — wo)T]

L, 1.,
2 W — Wy 2V

" <(%V)2 T = w0 G @ —wof | G T (@ — wo)’

- o PO 3
X 0 2>e‘f “sm(w—wo)T%—A( 27

2\39)° + (@ — wo)’

3 3 W — W » —
@39 + (@ — 01 G+ (0= w21)* 39 + (@ — we)

1 - 1 3y
x [1 —e 372 cos(w — we)T +—< 2
: A E ) Y N

W — Wy %*/ w — Wy >
3 + (@ — 0 @+ (0 — 01) (39 + (@ — w)

397+ (@ — wo)* (39 + (@ — @1,)?

. .1/ 3 3.,
><e”3f“sm(w—coo)T+2<( 27 2/
CU‘—CU12 Q)—-(j)o
3 + (0 —012) 39 + (0 — o)
1( %}, w - U)lz + %'\/
37 + (@ — o) G + (0 — w12)

) [1 — e 3T 2cos(w — wo)T]

2

~

@~ % )2> e T2 sin(w — wo)T. (A.4)

X
(3)° + (0 — oo
o7y L Y v e-o
o 2@ + (@ = 0 G + (=0 @GP+ (o= o)

@ = O > [1 — e ¥4 cos(w — wyy)T]

>< e
3 + (0 — wy )

N 1( 2y =y %
2037 + (0 — w21 @) + (0 — wyy)?

w — Wi
37 + (0 — o)

~J»

)e‘”f"“ sin(w — w,4)

>

) w — Wy

N < Iy 3 _
ED)? + (0 —wo) @) + (0= w1) G+ (@ — on)

1
2

W~ Yo —5,T4
x [ — e % cos(w — w, )T
(ﬂf+@—ww> 21

+

—1—< %A{) W — Wiy ZS’_;)
2\ + (0 — @0)® (39 + (0 — @31)

N

w—w Sn '
9 )6“57‘7"4s1n(co — W)

. SU—
@) + (@ — o)

~J

) (A.5)
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>

7 37 W — Wy,
G+ (@ - 0P G + (0 —-0n) 3+ (- 0n)

1
Pulw, T) = 5(

W — W2 —3vT/a =
X [1 —e ™" cos(w — wi,)T]
G + (0 — 01,2) '
N 1( 1y o-on 1
2\@ +H (@ -0l @0+ (-0, @)+ (- o,)
W — Wy, —3+F/a N
X e sin(w — wy,)T
(%/’)2+(w_0)12)> '
+ 1( %y %M W — Wiy
2\E) + (@ — w0 G + (0 — 012 G+ (0 — 0,)
@ — Wy —55T/4 7
X [l —e """ cos(w — wy,)T]
&W+w—mQ H
+ l %”‘/’ W — W3 i %“/
2\@? + (0 — w0 Gy + (0 —wi) @) + (0 — w,)?
w — Wyg _5-Fi4 . -~
X e sin(w — wq,)T. (A.6)
&W+w—%g h
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