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Abstract. A fully quantum-mechanical treatment of the dynamical Stark effect for resonant 
interactions is presented. The description begins with an operator master equation for the 
atom plus incident field. Reduced atomic matrix elements are derived for arbitrary field 
strengths. First- and second-order correlation functions in the scattered field are also 
obtained and discussed in relation to the scattered spectrum and intensity-fluctuation 
measurements. Our formalism has the appealing feature that all this information is readily 
available from the one set of four coupled equations. The deficiencies in both the one-photon 
approximation and the semiclassical perspective are established in a natural and transparent 
fashion. 

1. Introduction 

The subject of resonance fluorescence is a relatively old one, receiving classic treatment 
by Weisskopf and Wigner (1930, 1933) and later by Heitler (1954). These early 
calculations were based on perturbative techniques and hence restricted to weak 
scattering situations where the atom remains close to its ground state and behaves to a 
good approximation as the electron oscillator of the Lorentzian theory. An increased 
incident intensity alters the behaviour quite considerably, however, as the atom is then 
driven significantly from its ground state. The phenomenon of resonance fluorescence 
then exhibits new features associated with a behaviour which has come to be known 
as the dynamical or AC Stark effect. Here the quantum nature of the scattering 
source makes its mark, and in particular we find a quantum statistical component in 
the spectrum. 

Renewed interest has recently arisen in resonance fluorescence in relation to this 
nonlinear region. This has stemmed from proposals (Stroud and Jaynes 1970) that here 
there may be a test for QED as against the neoclassical theory for an atom reacting 
with the radiation field (Jaynes and Cummings 1963, Crisp and Jaynes 1969, Stroud 
and Jaynes 1970). Of particular interest for example is the long-time behaviour of the 
scattered spectrum. This is predicted in the neoclassical theory to reduce to a sharp 
line at the incident frequency. contrary to the quantum-mechanical expectation 
(Newstein 1968, Mollow 1969, Stroud 1971, 1973). In response to these proposals and 
the subsequent experimental verification of a three-peaked spectrum well into atomic 
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saturation (Schuda et a1 1974, Walther 1975, Wu et a1 1975, Hartig et a1 1976) a 
number of theoretical discussions have appeared (Chang and Stehle 1971, Gush and 
Gush 1972, Smithers and Freedhoff 1974, 1975, Hassan and Bullough 1975, Mollow 
1975a. b, Carmichael and Walls 1975a, Swain 1975, Cohen-Tannoudji 1975, 1976). 
Although in the course of this ‘dialogue’ differences have arisen in the various predictions, 
there appears now to be emerging a general agreement on the form of the scattered 
spectrum for intense fields and its long-time behaviour. 

We present here a fully quantum-mechanical analysis of the resonance fluorescence 
problem for a two-level atom in a resonant field. Our fundamental starting point is 
an operator master equation in the Markoffian approximation. While this approxi- 
mation has been criticized by some authors we may now rely on its recent verification 
for this specific application by Mollow (1975) and Epstein (1975). From our point of 
view we find that it has considerable tutorial advantages over those treatments which 
begin directly with Schrodinger’s equation. The various features of atomic dynamics 
and scattered spectrum are readily available from an essentially simple analysis and 
in a language indicating a stochastic process whose statistics have a purely quantum- 
mechanical origin. This serves as an uncomplicated and worthwhile perspective on the 
problem. Moreover we find that the second-order correlation function may be 
extracted with little extra work from the same equations that give atomic matrix 
elements and the first-order correlation function. This is a feature which has not 
previously been discussed in the literature and has considerable significance in that it 
gives rise to an interesting proposal for the measurement of spectral detail by optical 
homodyne or heterodyne spectroscopy. 

In $2 we outline the formal apparatus underlying our approach. Atomic dynamics 
are then investigated in $3 in terms of solutions to optical Bloch equations and the 
semiclassical form of the field is indicated. The first-order correlation function and 
scattered spectrum are obtained in $4 and the one-photon approximation demonstrated 
in $5. The second-order correlation function is derived in $6 and proposed as a basis 
for a new measurement of linewidths and frequency splitting. 

2. Formal apparatus 

The phenomenon of resonance fluorescence arises with the illumination of an atomic 
dipole transition by resonant radiation and appears as scattering from the incident 
beam into other modes of the radiation field. In subsequent sections we present 
results on both atomic dynamics and correlations in the scattered field. Here we 
formulate our approach and outline the formal apparatus employed to meet these ends. 

We consider a two-level atom coupled at resonance to a highly populated field 
mode and simultaneously interacting with the vacuum. Our treatment begins with the 
perspective which sees here an open system S interacting with a thermal reservoir R 
at zero temperature. Dividing the radiation field into incident and scattered components, 
E I  (Y, t )  and Es (r, t) ,  with 
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we then write the Hamiltonian for the composite system S O  R in the form 

H = H s  + H R  + HSR (2.2) 
with 

H s  = ~ W ~ U ' U  + #co,~J, + h ( ~ o a ~ o -  + K ~ U O + )  
(2.3) 

H R  = 1 hokbl,J.bkj, H S R  = h(Kk,j ,bL,J.cr-  + K,*, j .bk,Aa+).  
k,;. k 2. 

U' and i i  create and annihilate photons. in the incident beam with frequency U,,, 

wavevector ko  and polarization zo ; bL,j, and bk, j ,  fulfil a similar purpose for the vacuum 
mode of frequency uk, wavevector k and polarization g k i ;  c r z ,  cr+ and cr-  are the usual 
atomic pseudo spin operators and K~ and K k , j ,  are coupling constants for atomic 
dipole interaction of frequency w o ,  wk and polarization z0 ,  g k , j , .  The interaction 
between the radiation field and the atom has been written in the electric dipole and 
rotating-wave approximations. 

The derivation of a master equation for the reduced density operator p of S is well 
known and under the Markoffian assumption, the familiar procedures (see, for example, 
Agarwal 1973) lead to the form 

where y corresponds to the Einstein A coefficient. This we may express formally as 

dp= 9 p  
dt 

with the generalized Liouvillian 9 defined by 

0 being an arbitrary operator. 

Hamiltonian of S. For the familiar eigenstates of H s  we have 
It is convenient that we work in the energy representation corresponding to the 

where 

in) are the Fock states and 1 +) and 1 -) the upper and lower atomic states. Within 
this representation, equation (2.4) takes the form 

d~ii.,;in,< - i Y Y -- -- - ~ j n )  ~n . i? ;m,<  + ( -  1Y+' 4 C pn+ t , p ; i n +  1.v - 4 C ( ~ i i . q ; t n , i '  + ~ii , i , :m.b)  dt h \. 
i t  v 

(2.9) 
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where 

Pn,v;m,r = (El PI E:) q = 1,2 5 = 1,2. (2.10) 

We have here an infinite set of coupled equations indicating the successive scattering 
of photons from the incident beam and the consequent eventual decay of all matrix 
elements to those of lower photon number. It will nevertheless be unnecessary, so far 
as the fluorescent field itself is concerned, to solve such a complex system. We may 
put the detailed dynamical structure aside and deal only with atomic matrix elements 
summed over the incident field. We define pr,? by 

The scattered field may be expressed in terms of the atomic source operators for 
times mot >> 1 (Agarwal 1974, Ackerhalt and Eberly 1974, Kimble and Mandel 
1975a, b, Saunders et a1 1975) by 

E ~ ( Y ,  t )  = E&+’(v, t )  + E&-’(v, t )  (2.12) 

with 

E&++, t )  = &&+’(v, t )  - (2.13) 

&&+)(v, t )  describes a freely propagating field and the retarded source term is simply the 
retarded field generated by a point dipole (Landau and Lifshitz 1962); p is the atomic 
dipole moment. With this result we may then clearly obtain field correlations from 
the dynamical information within equation (2.9). In particular, for the first- and second- 
order correlation functions given by 

(2.14) 

(2.15) 

G“’(v, t ;  Y, t + 7) = (E&-’(v,  t )  E&+’(v, t + t)) 
G‘”(v, t ;  Y, t + t) = (E&-’(v ,  t )  E&-’(v, t + 7) E&+’(v, t + Z) E&+’(v, t ) )  

we may write respectively 

G“’(v, t ;  v, t + t) = Zo(v) (o+ ($U- (2 + t)) 
G‘2’(v, t ;  v, t + t) = l0(v)’ (o+ (&~+(?  + ~ ) o - ( t  + t)o-(F)) 

(2.16) 

(2.17) 

where t = t - r/c and 

(2.18) 

is the intensity detected at position Y at the retarded time ?= 0. Our concern is then with 
the evaluation of the two-time averages (a+(i)o-(t + 7)) and (o+($o+(i  + 7)o-(i  + t) 
a-(;)). For this purpose the quantum regression theorem of Lax is available (Lax 1967). 

The validity of the quantum regression theorem in this problem has been established 
within the rotating-wave approximation (see Mollow 1975a, b and references therein). 
Thus we find for 7 3 0 the expressions 

(2.19) (a+(i)o-(t + 7)) = Tr,[o- eyr p(i)o+l 

and 
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The determination of the matrix elements (2.11) and averages (2.19) and (2.20) is 
readily made from the solution of a simple set of four coupled equations. We merely 
assume an incident field of high intensity, possessing a sharply peaked photon-number 
distribution. We may for example take a coherent state corresponding to laser radiation 

U'' 

(n!)' 
1.) = exp(-ilr12) __ In). (2.21) 

Here ii = Irl 2 ,  which for the Poisson distribution also gives the variance. Then for 
71 - 10' a fractional change in photon number of only arises over one standard 
deviation. Combined with a parametric approximation the result of this circumstance 
is that in summing matrix elements over the field. the factor - i ( Q  - E i ) / h  in 
equation (2.9) may be taken through the summation as -i(E; - ,!$)/(I. We find for 
p,,,: the coupled equations 

Essentially the same set of equations may be used in solving for the averages (2.19) 
and (2.20). We may define respectively the two operators C(z) and n(z) by 

Z(z) = e"c(0) 

W )  = P ( t ^ b +  

and 

n(z) = eipr n(0) 

n(0) = 0 -  p(?)a+. 

It then clearly follows that we may write 

(2.23) 

(2.24) 

(2.25) 

and that matrix elements of these operators are consequently determined by equations 
formally equivalent to equation (2.9). After a transformation Z,),<(T) = g,/,:(~) e-'(Jor, 
the matrix elements of these operator equations (2.25) reduce to equations which are 
equivalent to equations (2.22) under the same conditions which lead to equations (2.22). 
Moreover, evaluating the respective traces, (equations (2.19) and (2.20)) yields 

< C J + ( & - ( F  f 7)) =!i(C,z(z) - C I I ( ~ ) )  - i (Czi (7)  - Zi,(T)) (2.26) 

and 

(,+(;)a+(; f T)a-(F f z)g-(i)) =i (n22(z )  + nll(7)) f i(n21 f n12(z)) 

where the matrix elements C,,<(z) and n,,,(z) are respectively defined by 

(2.27) 

C,,,(z) = C,(EII+ l l~(~) lE:>  (2.28) 



1204 H J Carmichael aiid D F Walls 

and 

K , , < ( T )  = c,, (E!ln(~)lG>. (2.29) 

We therefore simply require the solutions to a single set of four equations (equations 
(2.22)) in order to evaluate both atomic matrix elements and first- and second-order 
field correlations. 

3. Atomic dynamics and the semiclassical field 

The coupled equations (2.22) are easily solved for atomic matrix elements. Defining 
the vector j 

\P21 - P l Z /  

we find the formal solution 

j ( t )  = S exp(At) S-'fi(O) (3.2) 
where 

S1 0 0  0 

0 s2 0 0 

S1 0 s3 
l:2 + 8E ti2 

(3.3) 

s3 s4 2 i ~ l  ' I C  y 2  2i~z' IC 
SI 0 ~ 

s =  - y 2  1 $7 y 2  + 8 E K 2  +) - R 

aiid S 1 ,  S2. S 3  and S4 are arbitrary constants. 
A is the 4 x 4 diagonal matrix 

If we begin with an atom in its lower state the solutions, written in terms of the 
energy representation of the free atom (using equations (2.8) and (2.10)) are 

4nK2 [ 1 - e - 3 7 t / 4  (cosh Qt + !? sinh Ot)]  
P + , + ( t )  = ?2  + gEK2 R 

tl: cosh Rt + - sinh Rt 
R 

p + , - ( t )  = -2ifi' ' K  

R (3.7) 
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(3.9) 

Similar solutions follow for an initially excited atom and include an additional 
contribution accounting, in the weak-coupling limit, for normal spontaneous emission. 
These solutions are 

11 4nKZ [ 1 - e-3 "/4(cosh Rt + 2 Y  -sinh Rt 
y 2  + 8 n K 2  R p + , + ( t )  = 

cosh R t  - sinh Rt + e - 3 7 t / 4  

R 

p + , - ( t )  = -2iii'!'ti {y2 +y8n t i 2  [ 1 - n 
sinh R t  

(3.10) 

(3.1 1) 

Similar solutions to the semiclassical Bloch equations for a spin system in a combina- 
tion of static and RF magnetic fields were first given by Torrey (1949). 

In these solutions we see the dynamics separating into an initial transient regime, 
followed by a saturation steady state. For weak coupling, the saturated atom settles 
close to its lower level and we expect the behaviour of a classical electron oscillator. 
With increased incident intensity, however, we find the saturation steady state moves 
into the nonlinear region 

4n t i2 

p",+ = , ,2 + 8 f i t i 2 '  (3.12) 

For very intense illumination, a limit is reached midway between the upper and lower 
levels 

(3.13) 

Quantum fluctuations may therefore be expected to become important with intense 
illumination, while remaining of no consequence for weak scattering. 

To appreciate the predictions of the semiclassical perspective on the scattered field, 
we calculate the mean field which from equation (2.13) reads 

lim ps:,+ = r .  1 
il-s 

(3.14) 

where the average (o-(T)) is given by 
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Thus for the coherent-state field defined by equation (2.21) where a = 1x1 e’$ we find 
for the mean field 

(3.16) 

where pT,-(i) is given by equations (3.10) and (3.11) for an atom prepared in lower 
and upper states respectively. 

Here again is the initial transient region followed by saturation. For very intense 
incident radiation 

4 2 2  >> ( i y ) 2  (3.17) 

we may write 

(exp(-[i(co, + 22’ ‘ ~ ) t ^ +  $11 + expj-[i(oo - 2fi’ ’ ~ ) r ^ +  $]))I (3.18) 

which would predict semiclassically a three-component spectrum through the transient 
region reducing to a sharp line for long times. This is an erroneous prediction 
however as has been confirmed by recent experiments (Schuda et a1 1974, Wu et a1 1975, 
Walther 1975, Hartig et a1 1976). We will see in the following section how this 
inadequacy arises in neglecting quantum fluctuations. For weak illumination the sharp 
spectrum is as expected from classical electron-oscillator theory. 

4. The first-order correlation function : scattered spectrum 

In this section we present solutions for the first-order correlation function (2.14) from 
which we derive the scattered spectrum. This spectrum is defined in terms of the 
probability P(w. r ,  T )  for photon detection by a monochromatic detector during interval 
T. We have the result 

T T 

P(w, I’, T )  cc jy dt, jy dt, e’w(t2-r1) G(’) (r ,  t l  ; I‘, t2 1 (4.1) 

and with normalization so the integrated spectrum gives the intensity I(r, T )  = 
G’(I‘, t ;  r ,  t )  we then define the spectrum I (w ,  Y, T )  by 

Since 

G(’)(v, t l  ; I’. t 2 )  = G(’)(I’, t2 ; r ,  t l )*  

i t  readily follows that 

I ( 0 ,  I’, T )  = - 
’(’” 

2n ITc dt I@. t )  
2 Re [: drj:-’ dz eiwrG(’j(r, t ; r ,  t + z) 

(4.2) 

(4.3) 

(4.4) 

where we have introduced t and z with t ,  --f t and z = t2  - t. 
WOK the first-order correlation function. as given by equations (2.1 6), (2.18), (2.19) 

and (2.26) follows from the solution of equations (2.30). This is provided by equation 
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(3.2) with the introduction of the factor e-icooT. Thus, defining 

1 x 2 2  + Cl 1 \ 
2-41 c22 - x11 j 

x 2 1  + Cl2 

\ & I  - 1 1 2 1  

we write 

c(z)  = e-  S exp(A7) S-’ %(O) 

and from equations (2.23) and (2.28) the initial vector c(0) is given by 

(4.5) 

Due to the complexity of the solutions for atomic matrix elements and hence E(0) a 
general solution would serve no purpose here. If we concern ourselves now solely 
with the steady state however, from equations (3.6), (3.7) and (3.9) we may define 
z(0) in equation (4.7) by 

4nti2 
y 2  + 8n t i2 

P” ,+  = 

4n IC2 

y 2  + 8tz t i2 
p“- = 1 - 

and hence find 

(4.9) 
Taking the limit for T --+ x, the spectrum (4.4) is given by the Fourier transform 

(4.10) 
271 
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Thus, in the definition (3.5) for R we find a threshold at 

2 i i " 2 K  = $ y .  (4.11) 

Here the spectrum splits, changing from a single peak to a central peak plus equally 
spaced sidebands. For weak illumination, 

4nK2 << (4.12) 

equation (4.9) reduces to 

(4.13) 

and in the strong-coupling limit (equation (3.17)) we have 

+ 9exp[-(ty + iwo)z] + +exp( - [ + y  + i(wo y 2  e -  irior G $ ~ ' ( T )  = ~ 

2 i y 2  + 

Thus, from equation (4.10), for weak scattering we find 

4n K 2  

y 2  + 8?iic2 Z ( 0 ,  Y, CO) = Zo( r )  6(0 - 0 0  1 (4.15) 

and we regain the sharp spectrum predicted by the semiclassical theory. For very intense 
fields however, equations (4.10) and (4.1 5 )  give the results 

1 a y  1 ay 
4 ($y) '  + [ w  - ( 0 0  + 2 i i " 2 K ) ] 2  4 ( $ y ) 2  + [w - ( 0 0  - 2 i i ' ' 2 K ) 1 2  

+ -  + -  
(4.16) 

Thus, added to the coherent scattering, we see three peaks arising from the quantum 
fluctuations, in contrast to the picture presented for the steady state by equation (3.18). 

As an example of the behaviour of this first-order correlation function and spectrum 
in the transient region, let us now consider the time-dependent matrix elements in 
equation (4.7) but make a restriction to the intense field limit (3.17). An expression for 
the transient spectrum has not previously been obtained. For an initially excited atom 
equations ( 3 .  IO). (3.1 1 )  and (3.9) give 

(4.17) 

Introducing these into equation (4.7) we then find 

G(')(Y, t ; r ,  t + z) = fIo(+[l + exp(-$yi)cos2fi"2 ~i]exp[-(+y + ioo)z] 

+ + { I  + exp[-($7 - 2ifi"2~)r])exp[-($y + i w Z 1 ) ~ ]  

+ t{l + exp[-($y + 2 i P  ~)t]]exp[-($y + iw12)z1) (4.18) 
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where we define 

0 2 1  = WO + 2n”2ti 

0 1 2  = 0 0  - 2n”2ti. 
(4.19) 

We have managed the various integrals involved in equation (4.4) to obtain the time- 
dependent spectrum. For normalization we find 

(4.20) ~ ( v ,  T )  = + I O ( r )  (1 + e - 3 ~ f / 4  cos 2 ~ ’ ”  Ic ii‘) 
and 

(4.21) 

with ? = T - r/c. A full discussion of the scattered intensity is given by Kimble and 
Mandel (1975a). Now the time dependence of the probability P(w,r, T )  has a double 
origin. There is a non-stationary emission process and a superimposed T dependence 
associated with the finite time for detection. For the steady-state probability PcJw. Y. T )  
arising from equation (4.8) in the limit ?--+ x only the second consideration remains. 
We find 

(4.22) P s s ( o ,  Y, T )  = P,”,”(o, r, T )  + PsWsZ1(0,r, T )  + PE12(w,~*, T )  

with 

\ 

(4.23) 

(4.24) 

e-3yT/4 (4.25) 
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These results may be combined with equations (4.20) and (4.21) where we retain the 
first terms only, to give the spectrum obtained from a saturated atom after a finite 
time T. Clearly for T + ̂x; we regain equation (4.16). For the complete non-stationary 
correlation function (4.1 8) the spectrum is extremely complicated. We find it possible 
however to make a general prescription in the form 

(4.26) 

The first term is simply the three-peaked spectrum of the steady state modulated by 
the scattered intensity. The term ~ ' ( u J ,  I', T) which through the transient region modifies 
the shape of these three peaks contains zero integrated intensity. A full expression of 
l ' (w,  r ,  T )  is given in the appendix. 

Of course no restriction on the number of photon emissions has been made to 
this stage and equation (4.16) agrees with results by Mollow (1969. 1975a. b). 
Swain (1975) and Smithers and Freedhoff (1975). We m i l l  proceed now to shon hou 
a one-photon approximation may be introduced into our formalism demonstrating the 
inadequacy of omitting photon cascades. 

5. One-photon approximation 

Taking matrix elements diagonal in the field only, the master equation (2.9) reads 

(5.1) 

Let us now take the incident field initially in a Fock state with :Y photons and 
the atom excited. All other modes are initially in the vacuum and therefore the 
possible subsequent states of the coupled field plus atom are IS - / I .+) .  
IN - n + 1, -), n varying from 0 to N .  Correspondingly in the H s  representation we 
have states lE:) and I E ; )  for which from equation (5.1) we may write a set of ;I' + 1 
equations. As p.,+ must remain zero at all times, there are 4 coupled equations. 
formally the same as equation (5.1), while fdr P,,,~ ,:,,, ~ 



121 1 

where 

R' = [(i;')2 - 41Vii']~ '. 
We will concern oursel\ es from here only with the limit of intense illumination 

4Nx2  >> (try. 
Here 

P\ 2 L 

pl. \ I ( t )  = &exp[ -(+; + 2il$7' ' x ) t ]  

p\  \ ?( t )  = -$exp[-(+;' - 2 i ~ '  ' x ) t ]  

= P\ , l  \ I([) = + e - , '  

which gives for the probability that the coupled atom plus field remains in its initial 
state 

(5.10) 

This is just the result obtained by Stroud (1971) in a one-photon approximation. This 
is not however the probability that the first photon emission has not taken place, as 
stated by Stroud. We must recognize the possibility with an initially excited atom of 
realizing the state Ih' + 1,-) without emission to the vacuum. We find from equation 
(5.9) 

(5.1 1) 

The probabilit! for no emission therefore decays exponentially. without modulation. 
This is missed in Stroud's analysis since his basis does not include the state IN + 1, -). 

We now calculate the first-order correlation function and spectrum in a one-photon 
approximation by restricting ourselves to the reduced set of basis states 1,5:7), IE:,) 
and 1 E,:.- /E,:._ ') corresponding to the possible states involved in the scattering of 
the first photon. The calculation proceeds essentially as before with equation (2.28) 
replaced by 

(5.12) 

This obeys an equation formally equivalent to equation (5.2). After a transformition 
XVt(7) = z,!?(r) e-io0r the matrix equations of these matrix elements reduce to a form 
equivalent to equations (5.3). 

Now in equation (5.9) there is no steady state as the matrix elements decay 
eventually to those of lower photon number. In the knowledge that a steady-state 
spectrum does arise however, in the one-photon approximation we see it maintained by 
a series of independent emissions from the atomic excited state, each followed by 

p,,.+ :,,,+(t) = e-;f ' cos' N' ' K t .  

P .Y .+: ! .+([ )  + P.\+l;-:.Y+l.-(t) = e-''2. 

& { , < ( T )  = (EY.1 V T ) I  E 
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pumping back to the excited state by the incident field. The spectrum is then built 
up from a large number of identical contributions arising in separate transitions. In 
solving the equations for X > j c ( ~ )  we then take for the initial conditions required by 
equations (2.23) and (5.11) those defined by equation (5.9) for t = 0. We find from 
equations (2.14) and (2.26) 

G!:)(T) = :lo(r#)(exp[-(iy + iwo)z] + $exp{-[iy + i(wo + 2N"2ti)~]) 

+ texp{-[+y + i(oo - 2hr''2ti)~])). (5.13) 

Substituting into equation (4.14) gives 

(5.14) 

This spectrum is the same as that obtained by Stroud (1971) with the absence of 
his linewidth narrowing (for the origin of this feature see Mollow 1975). In comparison 
with equation (4.16) (neglecting the coherent scattering term) we see then the inadequacy 
of the one-photon approximation in predicting linewidths and peak heights. In equation 
(4.16) sidebands are broadened from the central peak by a factor of 3:2 and peak 
heights are in the ratio of 3: 1. The one-photon approximation omits the sideband 
broadening and gives the ratio of peak heights as 2: 1 (Carmichael and Walls 1975a). 
With the scattered intensity given by Gbf)(O) we might note also the reduction of 
intensity by a factor of 4 in equation (4.16) as compared to equation (5.15). This 
arises in the depletion of the initial scattered intensity to half its value at saturation. 
From equation (4.8) we have 

(5.15) 

We note in conclusion that while we have restricted ourselves here for the most 
part to the limit (equation (5.8)), for arbitrary intensities we will obtain the general 
features of the previous section with splitting of the spectrum at a threshold. 
Clearly from equation (5.7) however, the one-photon approximation sets this 
threshold at 

iY = (5.16) 
indicating twice the intensity required by equation (4.12). 

G(~)(I ' ,  t ;  18, t )  = + l o ( r )  (1 + e-37i/4 cos 2 ~ ' : ~  tit). 

6. The second-order correlation function 

We turn in this final section to the second-order correlation function and intensity 
correlations. Calculation of this function is readily available in our formalism. With 
equations (2.17) and (2.27) we require only the solution to equations (2.31). This 
follows again from the scheme outlined for atomic dynamics, and defining 
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we may write 

n(7) = S exp(Az) S- ’ n(0) 

where S and A are as defined in equations (3.3) and (3.4). From equation (2.24) we find 

We will concern ourselves only with the steady state and therefore from equations 
(3.6) and (3.10) the initial condition is specified by 

4tz IC2 

’ / 2  + & t i 2 ’  
ps:,T = 

Substitution in equation (6.2) yields 

where Gb,”(O) is simply the steady-state intensity 

Now the familiar demonstration of second-order correlation effects is, of course, the 
photon-bunching phenomenon in the Hanbury Brown and Twiss experiment (Hanbury 
Brown and Twiss 1956). In contrast to this there are also fields for which photons 
tend to be separated, on the average producing second-order correlations which fall 
below G$:’(0)2 as 7 approaches zero. Such an effect has been termed photon antibunching 
and arises for example in parametric subharmonic generation (Stoler 1974). Turning 
then to equation (6.5) we find just this behaviour where for 7 = 0, the second-order 
correlation function vanishes. The interpretation of this is simple. I t  of course depends 
solely on the quantum nature of the scattering. Consider a photon detected at a 
position Y and time ?. This then serves to identify the atom in its lower state at time t 
so that we may view this emission as preparing the atom in its ground state. Knowing 
that any subsequent emission must begin with an excited atom, a delay corresponding 
to the time taken to regain this excited condition is naturally expected. We ask 
therefore-what is the probability for finding an initially unexcited atom in its upper 
state? The answer is given by equation (3.6) and is just the expression (6.5) for 
G$(7). It has been pointed out by Cohen-Tannoudji (1976) who independently suggested 
the use of photon-correlation techniques in resonance fluorescence experiments that 
this provides an example of the principle of reduction of the wavepacket in quantum 
mechanics. 

In the weak field limit, equation (6.5) takes the form displayed in figure 1 : 

GA37) = G!;)(0)2 (1 - e-yr,2)2. (6.7) 
Here this antibunching phenomenon is particularly significant since it provides a purely 
QED prediction in a region which is otherwise adequately described in a semiclassical 
treatment. Measurement of G::’(z) therefore presents the possibilities for a further test of 
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0 20 LO 80 120 

T (a rb i t ra ry  units1 

Figure 1. Second-order correlation function for light scattered by a single atom. 
2 n ' " K  << $)J. 

QED. For strong illumination the correlation function is presented in figure 2 and 
corresponds to the form: 

G;:'(z) = Gii'(0)' (1 - e- 3yr'4 COS 2fi1hcz). (6.8) 
Here we have both photon bunching and antibunching displayed in the one situation. 
This of course corresponds to the oscillation of the probability for excitation through 
the transient regime between values above and below that attained at saturation. 

Let us now consider G~:)(T) from another perspective: that which sees in it a possible 
source for the experimental measurement of spectral parameters. We are concerned then 
particularly with the form (6.8) which is associated with the three-peaked spectrum 
given in equation (4.16). We see directly that contained in this function is information 
on both the peak widths and the splitting frequency. With the measurement of 

T (o rb i t  rory units) 

Figure 2. Second-order correlation function for light scattered by a single atom, 
2n ' "K  >> $7,  
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G::)(s) we can then extract spectral detail which has to this stage been unavailable 
(Carmichael and Walls 1975b, 1976). 

Now equation (6.5) applies to the scattering from a single atom repeatedly 
absorbing and re-emitting photons from the incident field. There is clearly then going 
to be a major problem obtaining sufficient scattered intensity in any attempt to measure 
this correlation function. In view of this fact we might usefully consider the simultaneous 
illumination of many atoms. This corresponds to the experiments of Schuda et a1 
(1974). Walther (1975). Wu et al (1975) and Hartig et ul (1976). where an atomic beam 
is arranged to cross a laser field so that many atoms experience irradiation at one 
time. The scattered field E,(u, t )  becomes the sum of fields Esk(r, t )  arising from individual 
atoms 

(6.9) 

Now these scattering centres enter the laser field at random times and may be taken 
to act independently. This means that the component of G:?(s) corresponding to 
the second-order correlations for individual atoms is swamped in the limit of many 
atoms by that corresponding to the product of first-order correlations. This reflects 
the introduction of Gaussian statistics which follow from the central limit theorem. 
We find a result which holds generally for Gaussian signals (Glauber 1963): 

(6.10) 
We may take the illuminated atoms in their saturated state and then the summed 
field will be stationary and the first-order correlation function simply proportional to 
that for a single atom. For weak and strong illumination respectively we may therefore 
write from equations (4.13) and (4.14) 

G'2'(r, t ; u ,  t + T )  = G'')(r, f : r .  t)' + ~G'')(v, t :a ,  t + s)I2. 

(6.1 1) 

and 

cos 2n' lis). (6.12) 

The property of photon antibunching is lost here as we expect. nonetheless equation 
(6.1 2) still contains the spectral information hoped for. Indeed it  bears possibilities 

IGbf)(s)l x I o ( 4  TT(e-rT2 1 + e -31r4  

r l a rb i t ro ry  units1 
Figure 3. Second-order correlation function for light scattered hq many atoms, 
2il' 'k-: $ y  = 20: 1. Sideband displacement 10 times natural linewidth. 
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r(orbitrary units) 

Figure 4. Second-order correlation function for light scattered by many atoms. 
2T1' * K : ~ Y  = 100: 1. Sideband displacement 50 times natural linewidth. 

over and above those found in equation (6.8). In figures 3 and 4 clearly the addition 
and subtraction of the upper and lower envelopes makes available both the curves 
e-;.r,'2 and e- 37r/4. Here then is the potential for a direct test of the predicted ratio, 3 : 2, 
for sideband broadening. 
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Appendix 

We present here the full form for the term I ' ( w , Y ,  T )  in equation (4.26). From 
equation (4.2) we write 

Iy0, Y, T )  = - ' P' (0 ,  Y, T )  2n dt I ( r ,  t )  

with the intensity and integrated intensity given by equations (4.20) and (4.21). 
P'(w, Y, T )  is conveniently written as the sum of four terms 
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w - 0 0  1 
- ii' Ti' ! (&i ' )2  + (w - wo)2 + (0 - wo)2 (3,q + (w - CO# 

P'(0, T )  = 

1217 
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